Tucson Office 343 West Franklin Street Tucson, AZ 85701 Tel 520.325.9194 Fax 520.325.2033 # **Technical Memorandum** **To:** Michael Langley USACE, Arizona Regulatory Branch 3636 N. Central Avenue, Suite 900 Phoenix, AZ 85012-1939 From: Russell Waldron, SWCA Environmental Consultants Date: November 20, 2019 Re: Request for an Approved Jurisdictional Determination for the Robson Ranch Quail Creek Project, Pima County, Arizona / SWCA Project No. 56178 # INTRODUCTION SWCA Environmental Consultants (SWCA) was contracted by Lewis Roca Rothgerber Christie, LLP, to complete an approved jurisdictional determination (AJD) for the Robson Ranch Quail Creek Project (herein called the project) in Pima County, Arizona. This AJD request covers approximately 640 acres of private land consisting of Section 32, Township 17 South, Range 14 East, in the Gila and Salt River Baseline and Meridian (project area) (Figure 1). The coordinates of the approximate midpoint of the project area are 31.906075° N, -110.935216° W. The purpose of this evaluation is twofold: 1) to document whether any natural or constructed drainages on the project area may meet the definition of waters of the U.S. (WUS) as described by regulation at 33 Code of Federal Regulations (CFR) 328.3 that would be subject to federal regulation under Section 404 of the Clean Water Act (22 United States Code 1344); and 2) if WUS may be present, to determine the limits of federal jurisdiction (as outlined in 33 CFR 328.4–5). # **METHODS** SWCA reviewed aerial photography of the project area and vicinity prior to conducting a site visit. On June 5, 2019, field reconnaissance was conducted to identify and map the locations of the ordinary high-water mark (OHWM) limits of potential WUS within the boundaries of the project area using electronic tablets. For each location sampled, the width and other drainage feature characteristics were recorded, and ground-level photographs were taken to document the condition of the feature. Field data were later superimposed onto a digital aerial photograph using AutoCAD/GIS software (Figure 3). Figure 1. Project area. Figure 2. Project location. # RESULTS # **Project Area Setting** The project area is in the Arizona Upland Subdivision Sonoran Desert Scrub biotic community as described by Brown¹. Site elevations range between 2,806 and 2,897 feet above mean sea level (amsl). The project area is located on the lower bajada of the Santa Rita Mountains east of the Santa Cruz River within the town of Sahuarita, Arizona. The Santa Rita Mountains are approximately 10 miles east-southeast of the project. The unnamed ephemeral drainages on the parcel drain approximately west-northwest to the Santa Cruz River. Dominant native plants on the site are saguaro (Carnegiea gigantea), velvet mesquite (Prosopis velutina), mesquite mistletoe (Prosopis velutina), whitethorn acacia (Vachellia constricta), and jumping cholla (Cylindropuntia fulgida). Other common native species include creosote bush (Larrea tridentata), candy barrelcactus (Ferocactus wislizeni), pinkflower hedgehog cactus (Echinocereus fasciculatus), catelaw acacia (Senegalia greggii), and tulip pricklypear (Opuntia phaeacantha). Non-native invasive plant species observed include buffelgrass (Pennisetum ciliare) and Arabian schismus (Arabian schismus). Along the ephemeral drainages the vegetation is largely consistent in coverage and species throughout the project area. Dense vegetation of velvet mesquite, whitethorn acacia, and creosote bush were the most common species present along the banks of the ephemeral drainages. The vegetation coverage between the ephemeral drainages became sparser with the dominant and common vegetation species previously mentioned. The project area is located in the Lower Santa Cruz Watershed, which encompasses more than 8,000 square miles in Arizona. The project area is shown on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) panels 04019C3465L and 04019C3470L. The project area is in an area of minimal flooding (Zone X) as mapped on the FIRM panels. According to the National Wetlands Inventory map² of the area, several of the drainages are mapped as riverine habitat classified as R4SBC, which translates to riverine, intermittent, streambed seasonally flooded. # **Potentially Jurisdictional Areas** The results of the fieldwork and review of aerial photography and floodplain maps indicate that there are five ephemeral drainages that exhibit indicators of OHWMs. Other features investigated were found to be swales or small erosional features or had discontinuous OHWMs. There are no special aquatic sites (including wetlands), relatively permanent waters (RPWs), or traditional navigable waters (TNW) in the project area. The five drainages displaying OHWMs have a total area of 6.14 acres within the project area (Table 1). Ground-level photographs taken at data points (identified on Figure 3) are located in Appendix A. The five drainages displaying indicators of OHWMs convey stormwater flow across the project area from the southeast to northwest and into the Santa Cruz River floodplain and main channel, located approximately 3 river miles northwest and downstream of the project area at its nearest point. The nearest downstream TNW to the project area is the Santa Cruz River at the Roger Road Wastewater Treatment Plant outfall, over 30 river miles north of the project area. ¹ Brown, D.E. (ed.). 1994. *Biotic Communities: Southwestern United States and Northwestern Mexico*. Salt Lake City: University of Utah Press. ² U.S. Fish and Wildlife Service (USFWS). 2019. National Wetlands Inventory, Wetlands Mapper. Available at: http://www.fws.gov/wetlands/Data/Mapper.html. Accessed June 2019. **Table 1.** Summary of Drainage Features Exhibiting Indicators of Ordinary High-Water Marks Within the Robson Ranch Quail Creek Project Area | Feature | Photo Points* | Latitude | Longitude | Length (feet) | Average Width (feet) | Area (acres) | |---------|-------------------------------------|-----------|-------------|---------------|----------------------|--------------| | Wash A | PP1, PP25, PP27-
PP29, PP55-PP57 | 31.911104 | -110.934449 | 5,570 | 16.7 | 2.13 | | Wash B | PP31-PP43 | 31.908060 | -110.932705 | 6,108 | 14.4 | 2.02 | | Wash C | PP13-PP21, PP-23 | 31.904812 | -110.936589 | 6,025 | 10.0 | 1.39 | | Wash C1 | PP11-PP12 | 31.900394 | -110.933601 | 905 | 9.0 | 0.19 | | Wash D | PP2-PP10 | 31.901833 | -110.943031 | 2,375 | 7.6 | 0.41 | | Total | | | | 20,983 | | 6.14 | ^{*}Photo point numbers correspond to Figure 3. # **Significant Nexus** The project area drainage features are all ephemeral and more than 30 river miles from the nearest downstream TNW (i.e., the Santa Cruz River between the Roger Road Wastewater Treatment Plant and the Pinal County Line). The low gradient and soil characteristics of the project area promotes infiltration and evaporation of stormwater runoff on and across the project area. The project area drainages' watershed is very small relative to the overall Lower Santa Cruz River watershed. The general tributary characteristics of the on-site drainages, including estimated peak flows, indicate that the potential for a hydrological nexus to the nearest TNW located more than 30 river miles downstream would be speculative. Because of the reasons stated above, any stormwater runoff from the project area would be at such low levels at the nearest receiving TNW that it would have, at most, an insubstantial and insignificant effect on the biological, chemical, and physical integrity of the TNW. Therefore, none of the surface waters crossing or originating on the project area should be considered WUS and subject to Section 404 of the Clean Water Act (see AJD forms in Appendix B for additional details on individual drainage features). Figure 3. Aerial photograph showing data photo points and OHWM limits. # **APPENDIX A** Representative Ground-Level Photographs (Photo points keyed to aerial photograph provided as Figure 3) Photograph 1. Photo Point 1; view facing upstream in Wash A. Photograph 2. Photo Point 27; view facing downstream in Wash A. Photograph 3. Photo Point 55; view facing upstream in Wash A. Photograph 4. Photo Point 31; view facing downstream in Wash B. Photograph 5. Photo Point 34; view facing downstream in Wash B. Photograph 6. Photo Point 37; view facing upstream in Wash B. Photograph 7. Photo Point 43; view facing upstream in Wash B. Photograph 8. Photo Point 21; view facing downstream in Wash C. Photograph 9. Photo Point 14; view facing upstream in Wash C. Photograph 10. Photo Point 12; view facing downstream in Wash C1. **Photograph 11.** Photo Point 3; view facing upstream in Wash D. Photograph 12. Photo Point 8; view facing upstream in Wash D. # **APPENDIX B** **Approved Jurisdictional Determination Forms** | Arizona | | | |---|-----|--| | | | | | AJD forms provided as separate documents. | B-1 | | Request for an Approved Jurisdictional Determination for the Robson Ranch Quail Creek Project, Pima County, # <u>Appendix 1 - REQUEST FOR CORPS JURISDICTIONAL DETERMINATION (JD)</u> District Name Here | To: | District Name Here | | |--
---|---------| | • | am requesting a JD on property located at: South Country Club Road | | | | (Street Address) | | | | City/Township/Parish: County: Pima State: Arizona | | | | Acreage of Parcel/Review Area for JD; 640 acres Section: 32 Township: 17 South Range; 14 East | | | | Section: 32 Township: 17 South Range: 14 East Latitude (decimal degrees): 31.906075° N Longitude (decimal degrees): -110.935216° W | | | | For linear projects, please include the center point of the proposed alignment.) | | | • | Please attach a survey/plat map and vicinity map identifying location and review area for the JD. | | | • | ✓ I currently own this property. | | | | I am an agent/consultant acting on behalf of the requestor. Other (please explain): | | | • | Reason for request: (check as many as applicable) | | | | I intend to construct/develop a project or perform activities on this parcel which would be designed to | | | | avoid all aquatic resources. I intend to construct/develop a project or perform activities on this parcel which would be designed to | | | | avoid all jurisdictional aquatic resources under Corps authority. | | | | intend to construct/develop a project or perform activities on this parcel which may require | | | | authorization from the Corps, and the JD would be used to avoid and minimize impacts to jurisdictional | | | | iquatic resources and as an initial step in a future permitting process. | | | | I intend to construct/develop a project or perform activities on this parcel which may require authorization and the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the name of the ID is to be used in the ID is to be used in the ID is to be used in the name of the ID is to be used in | on from | | | he Corps; this request is accompanied by my permit application and the JD is to be used in the permitting particular intendition to construct/develop a project or perform activities in a navigable water of the U.S. which is | process | | | ncluded on the district Section 10 list and/or is subject to the ebb and flow of the tide. | | | | IA Corps JD is required in order to obtain my local/state authorization. | | | | I intend to contest jurisdiction over a particular aquatic resource and request the Corps confirm that | | | , | urisdiction does/does not exist over the aquatic resource on the parcel. I believe that the site may be comprised entirely of dry land. | | | | Other: | | | • | ype of determination being requested: | | | ļ | ☑ I am requesting an approved JD. | | | į | I am requesting a preliminary JD. | | | • | I am requesting a "no permit required" letter as I believe my proposed activity is not regulated. I am unclear as to which JD I would like to request and require additional information to inform my decis | | | | and anotear as to which so I would like to request and require additional information to inform my decis | sion. | | By s | gning below, you are indicating that you have the authority, or are acting as the duly authorized agent of a | | | pers | in or entity with such authority, to and do hereby grant Corps personnel right of entry to legally access the | | | site i | needed to perform the JD. Your signature shall be an affirmation that you possess the requisite property | | | rigin | to request a JD on the subject property. | | | *Cim | Day Day | | | _ | yped or printed name: Paula Robinson | | | | Company name: Robson Ranch Quail Creek , LLC | | | | Address: 9532 East Riggs Road | | | | Sun Lakes, AZ 85248 | | | | Daytime phone no.: 480.895.4328 | | | | Email address: michael.milovanovic@robson.com | | | Principal Purparea subject to Routine Uses | ivers and Harbors Act, Section 10, 33 USC 403; Clean Water Act, Section 404, 33 USC 1344; Marine Protection, Research, and Sanctuaries Act, USC 1413; Regulatory Program of the U.S. Army Corps of Engineers; Final Rule for 33 CFR Parts 320-332. ose: The information that you provide will be used in evaluating your request to determine whether there are any aquatic resources within the project rederal jurisdiction under the regulatory authorities referenced above. This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public, and may be | | | the approved i | as part of a public notice as required by federal law. Your name and property location where federal jurisdiction is to be determined will be included in risdictional determination (AJD), which will be made available to the public on the District's website and on the Headquarters USACE website. bmission of requested information is voluntary; however, if information is not provided, the request for an AJD cannot be evaluated nor can an AJD be | | # APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: | BACKGROUND | INFORMATION | |------------|------------|-------------| | | | | | A. REPORT COMPLET | ION DATE FOR AP | PROVED JURISDICT | IONAL DETERMINATION | 1 (JD): N | November 20. | . 2019 | |-------------------|-----------------|------------------|---------------------|-----------|--------------|--------| |-------------------|-----------------|------------------|---------------------|-----------|--------------|--------| | B. | DISTRICT OFFICE | . FILE NAME. | AND NUMBER: | Los Angeles Distri | ct. File No. Pending | |----|-----------------|--------------|-------------|--------------------|----------------------| | | | | | | | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: AZ County/parish/borough: Pima City: Center coordinates of site (lat/long in degree decimal format): Lat. 31.911104° N, Long110.934449° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Wash A Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The Santa Cruz River between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line Name of watershed or Hydrologic Unit Code (HUC): 15050301 (Upper Santa Cruz) Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | |-----------|---| | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 11/2019 ☐ Field Determination. Date(s): 06/2019 | | SEC
A. | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | ere Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the iew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past,
or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Drainage is ephemeral and does not qualify as a TNW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW. | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. # **SECTION III: CWA ANALYSIS** # A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | TNW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | # B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. # 1. Characteristics of non-TNWs that flow directly or indirectly into TNW # Watershed size: 1,680,515.46 acres Drainage area: 3,189.88 acres Average annual rainfall: inches Average annual snowfall: 0.0 inches (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through 3 tributaries before entering TNW. (i) General Area Conditions: Project waters are cross or serve as state boundaries. Explain: Identify flow route to TNW⁵: Route of potential flow is from ephemeral drainage to ephemeral drainage, to Santa Cruz River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: . | |-------|-----|--| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: | | | | Tributary properties with respect to top of bank (estimate): Average width: 16.7 feet Average depth: 3 feet Average side slopes: 3:1. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: relatively stable. Presence of run/riffle/pool complexes. Explain: Not present. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 1 % | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: 2-5 Describe flow regime: ephemeral. Other information on duration and volume: | | | | Surface flow is: Confined. Characteristics: | | | | Subsurface flow: No. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition destruction of terrestrial vegetation the presence of wrack line sediment sorting scour multiple observed or predicted flow events abrupt change in plant community other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Oil or scum line along shore objects Fine shell or debris deposits (foreshore) Physical markings/characteristics Didal gauges Other (list): Mean High Water Mark indicated by: Survey to available datum; Physical markings; Vegetation lines/changes in vegetation types. | | (iii) | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: tify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|------|--| | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Asical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland
quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: artify specific pollutants, if known: | | | (iii) | | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | reristics of all wetlands adjacent to the tributary (if any) wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: ### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: This unnamed ephemeral drainage is located more than 30 river miles from the nearest TNW reach, the Santa Cruz River segment between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line. The low stormwater flow discharge rates in combination with the geomorphology of the watershed, man-made impediments, and the distance to the nearest TNW indicates that the possibilty of a significant hydrologic connection between this drainage and the nearest TNW is tenuous. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW or other downstream foodwebs. No pollutants or critical habitats were identified within the analysis area. This ephemeral drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological intergity of the nearest TNW. Therefore, this unamed ephemeral drainage does not posssess a significant nexus with the nearest TNW. - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY). | | 1. | TNWs and Adj | acent Wetlands. | Check all that appl | y and provide size estimates in review area: | |----|--------------|-----------------|---------------------|--| | | TNWs: | linear feet | width (ft), Or, | acres. | | | Wetlands adj | acent to TNWs: | acres. | | 2. RPWs that flow directly or indirectly into TNWs. | | Fributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Fributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |--------|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | ands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | Prov | ide acreage estimates for jurisdictional wetlands in the review area: acres. | | | ands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide acreage estimates for jurisdictional wetlands in the review area: acres. | | | ands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide estimates for jurisdictional wetlands in the review area: acres. | | As a | general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DEGRAI | ED [INTERSTATE OR INTRA-STATE] WATERS,
INCLUDING ISOLATED WETLANDS, THE USE, DATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY ATERS (CHECK ALL THAT APPLY): ¹⁰ | E. ⁸See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): ☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. ☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. ☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). ☑ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:As described in Section III-C1 above, an analysis of this ephemeral drainage detrmined that it did not possesss a significant nexus with the nearest TNW. ☐ Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): 5,570 linear feet, 16.7 avg. width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps:04019C3465L and 04019C3470L. 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):DigitalGlobe 2017. | | | | | or 🛛 Other (Name & Date):ground level photog | raphs 2019. | |---|-------------| | Previous determination(s). File no. and date of response lett | ter: . | | Applicable/supporting case law: . | | | Applicable/supporting scientific literature: . | | | Other information (please specify): | | | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: . # APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: | BACKGROUND | INFORMATION | |------------|------------|-------------| | SECTION I. | DACKGROUND | IMPORMATION | | A. | REPORT COMPLETION DATE FOR | APPROVED JURISDICTIONAL | DETERMINATION (JD): November | r 20, 2019 | |----|----------------------------|-------------------------|------------------------------|------------| |----|----------------------------|-------------------------|------------------------------|------------| ### B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Los Angeles District, File No. Pending | D. | DISTRICT OFFICE, FILE NAME, AND NUMBER: LOS Angeles District, File No. Fending | |-----------|---| | c. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: AZ County/parish/borough: Pima City: Center coordinates of site (lat/long in degree decimal format): Lat. 31.908060° N, Long110.932705° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Wash B Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The Santa Cruz River between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line Name of watershed or Hydrologic Unit Code (HUC): 15050301 (Upper Santa Cruz) Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 11/2019 ☐ Field Determination. Date(s): 06/2019 | | SE(
A. | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | revi | warea. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): | | | Non-regulated waters/wetlands (check if applicable):³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Drainage is ephemeral and does not qualify as a TNW. Therefore, this drainage could only be considered | jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW. ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation
is presented in Section III.F. # **SECTION III: CWA ANALYSIS** # A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | # B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. # 1. Characteristics of non-TNWs that flow directly or indirectly into TNW # Watershed size: 1,680,515.46 acres Drainage area: 3,189.88 acres Average annual rainfall: inches Average annual snowfall: 0.0 inches (ii) Physical Characteristics: (a) Relationship with TNW: ☐ Tributary flows directly into TNW. ☐ Tributary flows through 4 tributaries before entering TNW. (i) General Area Conditions: Tributary flows through 4 tributaries before entering TNW. Project waters are Pick List river miles from RPW. Project waters are Pick List river miles from RPW. Project waters are Pick List aerial (straight) miles from RPW. Project waters are Pick List aerial (straight) miles from RPW. Identify flow route to TNW⁵: Route of potential flow is from ephemeral drainage, ephemeral drainage, ephemeral drainage, to Santa Cruz River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: . | |-------|-----|--| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: | | | | Tributary properties with respect to top of bank (estimate): Average width: 14.4 feet Average depth: 3 feet Average side slopes: 2:1. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Cother. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: relatively stable. Presence of run/riffle/pool complexes. Explain: Not present. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 1 % | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: 2-5 Describe flow regime: ephemeral. Other information on duration and volume: | | | | Surface flow is: Confined. Characteristics: | | | | Subsurface flow: No. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting sediment sorting scour change in plant community other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Oil or scum line along shore objects Fine shell or debris deposits (foreshore) Physical markings/characteristics Didal gauges Other (list): Mean High Water Mark indicated by: Survey to available datum; Physical markings; Vegetation lines/changes in vegetation types. | | (iii) | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: tify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|------|--| | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Asical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: artify specific pollutants, if known: | | | (iii) | | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | reristics of all wetlands adjacent to the tributary (if any) wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: ### C. SIGNIFICANT NEXUS DETERMINATION A
significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: This unnamed ephemeral drainage is located more than 30 river miles from the nearest TNW reach, the Santa Cruz River segment between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line. The low stormwater flow discharge rates in combination with the geomorphology of the watershed, man-made impediments, and the distance to the nearest TNW indicates that the possibilty of a significant hydrologic connection between this drainage and the nearest TNW is tenuous. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW or other downstream foodwebs. No pollutants or critical habitats were identified within the analysis area. This ephemeral drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological intergity of the nearest TNW. Therefore, this unamed ephemeral drainage does not posssess a significant nexus with the nearest TNW. - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and | Adjacent Wetlands. | Check all that | apply and provide size estimates in review area: | |----|----------|---------------------|-----------------|--| | | TNWs: | linear feet | width (ft), Or, | acres. | | | Wetland | s adjacent to TNWs: | acres. | | 2. RPWs that flow directly or indirectly into TNWs. | | Fributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Fributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |--------|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | -RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | lands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | Prov | ide acreage estimates for jurisdictional wetlands in the review area: acres. | | | lands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide acreage estimates for jurisdictional wetlands in the review area: acres. | | | lands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide estimates for jurisdictional wetlands in the review area: acres. | | As a | general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DEGRAI | ED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY ATERS (CHECK ALL THAT APPLY): 10 | E. ⁸See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----
---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): ☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. ☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. ☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). ☑ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:As described in Section III-C1 above, an analysis of this ephemeral drainage detrmined that it did not possesss a significant nexus with the nearest TNW. ☐ Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): 6,108 linear feet, 14.4 avg. width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps:04019C3465L and 04019C3470L. 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):DigitalGlobe 2017. | | | | | | or Other (Name & Date):ground level photographs 2019. | |-------|--| | Pr Pr | evious determination(s). File no. and date of response letter: . | | Ap Ap | oplicable/supporting case law: | | Ap | oplicable/supporting scientific literature: | | Ot | her information (please specify): | | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: . # APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: | BACKGROUND | INFORMATION | |------------|------------|-------------| | SECTION I. | DACINOLOUD | IMPORMATION | | A. | REPORT COMPLETION DATE FOR APP | ROVED JURISDICTIONAI | L DETERMINATION (JD): | November 20, 2019 | |----|--------------------------------|----------------------|-----------------------|-------------------| | В. | DISTRICT OFFICE | . FILE NAME. | AND NUMBER: | Los Angeles Distr | ict, File No. Pending | |----|-----------------|--------------|-------------|-------------------|-----------------------| | | | | | | | | ъ. | DISTRICT OFFICE, FILE WAVE, AND WOMBER. Los Angeles District, File No. 1 chang | |-----|---| | С. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: AZ County/parish/borough: Pima City: Center coordinates of site (lat/long in degree decimal format): Lat. 31.900394° N, Long110.933601° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Wash C1 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The Santa Cruz River between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line Name of watershed or Hydrologic Unit Code (HUC): 15050301 (Upper Santa Cruz) Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a | | | different JD form. | | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 11/2019 ☐ Field Determination. Date(s): 06/2019 | | SEC | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | The | re Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the lew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | В. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Drainage is ephemeral and does not qualify as a TNW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant | nexus with the downstream TNW. ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. # **SECTION III: CWA ANALYSIS** TAIX # A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW
Summarize rationale supporting conclusion that wetland is "adjacent": | | # B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. # 1. Characteristics of non-TNWs that flow directly or indirectly into TNW ### (i) General Area Conditions: Watershed size: 1,680,515.46 acres Drainage area: 3,189.88 acres Average annual rainfall: inches Average annual snowfall: 0.0 inches # (| re entering TNW. | |------------------| | | | from TNW. | | RPW. | | es from TNW. | | miles from RPW. | | ries. Explain: | | • | | | Identify flow route to TNW5: Route of potential flow is from ephemeral drainage to ephemeral drainage to ephemeral drainage, to Santa Cruz River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: . | |-------|-----|--| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: ☐ Natural ☐ Artificial (man-made). Explain: ☐ Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: 9.0 feet Average depth: 2 feet Average side slopes: 3:1. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: relatively stable. Presence of run/riffle/pool complexes. Explain: Not present. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 1 % | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: 2-5 Describe flow regime: ephemeral. Other information on duration and volume: | | | | Surface flow is: Confined. Characteristics: | | | | Subsurface flow: No. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: https://example.com/racteristics/racter | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | (iv) | Biol | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|------
--| | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Sical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting Discrete wetland hydrologic connection. Explain: Ecological connection. Explain: Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: uracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: utify specific pollutants, if known: | | | (iii) | | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | <u>Directly abuts? (Y/N)</u> <u>Size (in acres)</u> <u>Directly abuts? (Y/N)</u> <u>Size (in acres)</u> Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: This unnamed ephemeral drainage is located more than 30 river miles from the nearest TNW reach, the Santa Cruz River segment between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line. The low stormwater flow discharge rates in combination with the geomorphology of the watershed, man-made impediments, and the distance to the nearest TNW indicates that the possibilty of a significant hydrologic connection between this drainage and the nearest TNW is tenuous. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW or other downstream foodwebs. No pollutants or critical habitats were identified within the analysis area. This ephemeral drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological intergity of the nearest TNW. Therefore, this unamed ephemeral drainage does not posssess a significant nexus with the nearest TNW. - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and A | Adjacent Wetlands. | Check all that apply | and provide size estimates in review area: | |----|------------|--------------------|----------------------|--| | | TNWs: | linear feet | width (ft), Or, | acres. | | | ■ Wetlands | adjacent to TNWs: | acres. | | 2. RPWs that flow directly or indirectly into TNWs. | | Fributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Fributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |--------|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | -RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | | lands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | Prov | ide acreage estimates for jurisdictional wetlands in the review area: acres. | | | lands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide acreage estimates for jurisdictional wetlands in the review area: acres. | | | lands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus
with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | Prov | ide estimates for jurisdictional wetlands in the review area: acres. | | As a | general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DEGRAI | ED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY ATERS (CHECK ALL THAT APPLY): 10 | E. ⁸See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): ☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. ☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. ☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). ☑ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:As described in Section III-C1 above, an analysis of this ephemeral drainage detrmined that it did not possesss a significant nexus with the nearest TNW. ☐ Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): 905 linear feet, 9.0 avg. width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). State/Local wetland inventory map(s): FEMA/FIRM maps:04019C3465L and 04019C3470L. 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):DigitalGlobe 2017. | | | | | or ☑ Other (Name & Date):ground level photographs 2019. | |--| | Previous determination(s). File no. and date of response letter: | | Applicable/supporting case law: | | Applicable/supporting scientific literature: . | | Other information (please specify): | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: . ### APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: | BACKGROUND | INFORMATION | |------------|------------|-------------| | | | | | A. | REPORT COMPLETION DATE FOR APP | ROVED JURISDICTIONAI | L DETERMINATION (JD): | November 20, 2019 | |----|--------------------------------|----------------------|-----------------------|-------------------| | В. | DISTRICT OFFICE | . FILE NAME. | AND NUMBER: | Los Angeles Distri | ct. File No. Pending | |----|-----------------|--------------|-------------|--------------------|----------------------| | | | | | | | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: AZ County/parish/borough: Pima City: Center coordinates of site (lat/long in degree decimal format): Lat. 31.904812° N, Long110.936589° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Wash C Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The Santa Cruz River between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line Name of watershed or Hydrologic Unit Code (HUC): 15050301 (Upper Santa Cruz) Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | |----------|---| | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 11/2019 ☐ Field Determination. Date(s): 06/2019 | | SE
A. | CTION II: SUMMARY OF FINDINGS
RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | ere Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the iew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ ■ Potentially jurisdictional waters and/or wetlands were
assessed within the review area and determined to be not jurisdictional. Explain: Drainage is ephemeral and does not qualify as a TNW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW. | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" ⁽e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. ### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | INW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": | | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW (i) General Area Conditions: # Watershed size: 1,680,515.46 acres Drainage area: 3,189.88 acres Average annual rainfall: inches Average annual snowfall: 0.0 inches (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. ☐ Tributary flows through 3 tributaries before entering TNW. Project waters are **30 (or more)** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are 25-30 aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW5: Route of potential flow is from ephemeral drainage to ephemeral drainage, to Santa Cruz River. Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: . | |-------|-----|--| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: ☐ Natural ☐ Artificial (man-made). Explain: ☐ Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: 10.0 feet Average depth: 1 feet Average side slopes: 3:1. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: relatively stable. Presence of run/riffle/pool complexes. Explain: Not present. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 1 % | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: 2-5 Describe flow regime: ephemeral. Other information on duration and volume: | | | | Surface flow is: Confined. Characteristics: . | | | | Subsurface flow: No. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | emical Characteristics: racterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: Litify specific pollutants, if known: | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|------|--| | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Asical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: artify specific pollutants, if known: | | | (iii) | | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | reristics of all wetlands adjacent to the tributary (if any) wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly
abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: This unnamed ephemeral drainage is located more than 30 river miles from the nearest TNW reach, the Santa Cruz River segment between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line. The low stormwater flow discharge rates in combination with the geomorphology of the watershed, man-made impediments, and the distance to the nearest TNW indicates that the possibilty of a significant hydrologic connection between this drainage and the nearest TNW is tenuous. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW or other downstream foodwebs. No pollutants or critical habitats were identified within the analysis area. This ephemeral drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological intergity of the nearest TNW. Therefore, this unamed ephemeral drainage does not posssess a significant nexus with the nearest TNW. - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY) | | 1. | TNWs and Adj | acent Wetlands. | Check all that app | ly and provide size estimates in review area: | |----|--------------|-----------------|--------------------|---| | | TNWs: | linear feet | width (ft), Or, | acres. | | | Wetlands ad | jacent to TNWs: | acres. | | 2. RPWs that flow directly or indirectly into TNWs. | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |----|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | ■ Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | 7. | As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DE | PLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 | E. ⁸See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----
---| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): ☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. ☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. ☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). ☑ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:As described in Section III-C1 above, an analysis of this ephemeral drainage detrmined that it did not possesss a significant nexus with the nearest TNW. ☐ Other: (explain, if not covered above): . | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): 6,025 linear feet, 10.0 avg. width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps:04019C3465L and 04019C3470L. 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):DigitalGlobe 2017. | | | | | or ☑ Other (Name & Date):ground level photographs 2019. | |--| | Previous determination(s). File no. and date of response letter: | | Applicable/supporting case law: | | Applicable/supporting scientific literature: . | | Other information (please specify): | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: . ## APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. | SECTION I: | BACKGROUND | INFORMATION | |------------|------------|-------------| | | | | | A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): November | |--| |--| | В. | DISTRICT OFFICE | , FILE NAME, | AND NUMBER: Los | Angeles District | , File No. Pending | | |----|-----------------|--------------|-----------------|------------------|--------------------|--| | | | | | | | | | C. | PROJECT LOCATION AND BACKGROUND INFORMATION: State: AZ County/parish/borough: Pima City: Center coordinates of site (lat/long in degree decimal format): Lat. 31.901833° N, Long110.943031° W. Universal Transverse Mercator: Name of nearest waterbody: Unnamed Wash D Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: The Santa Cruz River between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line Name of watershed or Hydrologic Unit Code (HUC): 15050301 (Upper Santa Cruz) Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | |-----------|---| | D. | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): ☐ Office (Desk) Determination. Date: 11/2019 ☐ Field Determination. Date(s): 06/2019 | | SEC
A. | CTION II: SUMMARY OF FINDINGS RHA SECTION 10 DETERMINATION OF JURISDICTION. | | | ere Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the iew area. [Required] Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: | | B. | CWA SECTION 404 DETERMINATION OF JURISDICTION. | | The | ere Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | 1. Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): TNWs, including territorial seas Wetlands adjacent to TNWs Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs Non-RPWs that flow directly or indirectly into TNWs Wetlands directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs Impoundments of jurisdictional waters Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres. | | | c. Limits (boundaries) of jurisdiction based on: Pick List Elevation of established OHWM (if known): | | | 2. Non-regulated waters/wetlands (check if applicable): ³ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Drainage is ephemeral and does not qualify as a TNW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW. | ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. ### **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. | 1. | INW Identify TNW: | | |----|---|--| | | Summarize rationale supporting determination: . | | | 2. | Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent":
| | ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW # (i) General Area Conditions: Watershed size: 1,680,515.46 acres Drainage area: N/A acres Average annual rainfall: inches Average annual snowfall: 0.0 inches (ii) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. ☐ Tributary flows through 3 tributaries before entering TNW. Project waters are **30 (or more)** river miles from TNW. Project waters are **Pick List** river miles from RPW. Project waters are 25-30 aerial (straight) miles from TNW. Project waters are **Pick List** aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Identify flow route to TNW5: Route of potential flow is from ephemeral drainage to ephemeral drainage, to Santa Cruz River. ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | | Tributary stream order, if known: . | |-------|-----|--| | | (b) | General Tributary Characteristics (check all that apply): Tributary is: ☐ Natural ☐ Artificial (man-made). Explain: ☐ Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: 7.6 feet Average depth: 2 feet Average side slopes: 3:1. | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Cother. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: relatively stable. Presence of run/riffle/pool complexes. Explain: Not present. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): 1 % | | | (c) | Flow: Tributary provides for: Ephemeral flow Estimate average number of flow events in review area/year: 2-5 Describe flow regime: ephemeral. Other information on duration and volume: | | | | Surface flow is: Confined. Characteristics: | | | | Subsurface flow: No. Explain findings: Dye (or other) test performed: | | | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil destruction of terrestrial vegetation the presence of wrack line vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. Explain: | | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | (iii) | Cha | emical Characteristics: cracterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.) Explain: https://example.com/reserved-based-b | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | logical Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | |----|-------|------
--| | 2. | Cha | ract | eristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | (i) | | Asical Characteristics: General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | | (b) | General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | | | Surface flow is: Pick List Characteristics: . | | | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | | (c) | Wetland Adjacency Determination with Non-TNW: ☐ Directly abutting ☐ Not directly abutting ☐ Discrete wetland hydrologic connection. Explain: ☐ Ecological connection. Explain: ☐ Separated by berm/barrier. Explain: | | | | (d) | Proximity (Relationship) to TNW Project wetlands are Pick List river miles from TNW. Project waters are Pick List aerial (straight) miles from TNW. Flow is from: Pick List. Estimate approximate location of wetland as within the Pick List floodplain. | | | (ii) | Cha | emical Characteristics: aracterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: artify specific pollutants, if known: | | | (iii) | | logical Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | 3. | Cha | All | reristics of all wetlands adjacent to the tributary (if any) wetland(s) being considered in the cumulative analysis: Pick List proximately () acres in total are being considered in the cumulative analysis. | Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres) Summarize overall biological, chemical and physical functions being performed: #### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: This unnamed ephemeral drainage is located more than 30 river miles from the nearest TNW reach, the Santa Cruz River segment between Roger Road Wastewater Treatment Plant outfall and Pinal/Pima County Line. The low stormwater flow discharge rates in combination with the geomorphology of the watershed, significant man-made impediments, and the distance to the nearest TNW indicates that the possibilty of a significant hydrologic connection between this drainage and the nearest TNW is tenuous. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW or other downstream foodwebs. No pollutants or critical habitats were identified within the analysis area. This ephemeral drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological intergity of the nearest TNW. Therefore, this unamed ephemeral drainage does not posssess a significant nexus with the nearest TNW. - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and A | Adjacent Wetlands. | Check all that apply | y and provide size estimates in review are | a: | |----|------------|--------------------|----------------------|--|----| | | TNWs: | linear feet | width (ft), Or, | acres. | | | | Wetlands | adjacent to TNWs: | acres. | | | 2. RPWs that flow directly or indirectly into TNWs. | | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: | |-----|---| | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: . | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have
when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional wetlands in the review area: acres. | | | Impoundments of jurisdictional waters. ⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | DEC | LATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 | E. ⁸See Footnote # 3. 9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. 10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | | which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | |----|--| | | Identify water body and summarize rationale supporting determination: | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres. Identify type(s) of waters: Wetlands: acres. | | F. | NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): ☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. ☐ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. ☐ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). ☑ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:As described in Section III-C1 above, an analysis of this ephemeral drainage detrmined that it did not possesss a significant nexus with the nearest TNW. ☐ Other: (explain, if not covered above): | | | Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: . Wetlands: acres. | | | Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): 2,375 linear feet, 7.6 avg. width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | CTION IV: DATA SOURCES. | | A. | SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: National wetlands inventory map(s). Cite name: State/Local wetland inventory map(s): FEMA/FIRM maps:04019C3465L and 04019C3470L. 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: △ Aerial (Name & Date):DigitalGlobe 2017. | | | | | or Other (Name & Date):ground level photographs 2019. | |--| | Previous determination(s). File no. and date of response letter: | | Applicable/supporting case law: | | Applicable/supporting scientific literature: . | | Other information (please specify): | | | B. ADDITIONAL COMMENTS TO SUPPORT JD: .